SPECIALIA

The editors do not hold themselves responsible for the opinions expressed in the authors' brief reports. – Les auteurs sont seuls responsables des opinions exprimées dans ces brèves communications. – Für die Kurzmitteilungen ist ausschliesslich der Autor verantwortlich. – Per le brevi comunicazioni è responsabile solo l'autore. – Ответственность за короткие сообщения несёт исключительно автор. – Solo los autores son responsables de las opiniones expresadas en estas comunicationes breves.

Furospongolide, a new C₂₁ furanoterpene from a marine organism¹

Y. Kashman and M. Zviely

Department of Chemistry, Tel-Aviv University, 61390-Ramat-Aviv (Israel), 7 January 1980

Summary. The structure of a new linear C_{21} furanoterpene, furospongolide (1), obtained from the marine sponge Dysidea herbacea, was determined by spectral means.

C₂₁-Furanoterpenes are among the most unusual terpenes isolated from sponges, mainly occurring in the genus Spongia². The majority of these compounds terminate in a furane ring at both ends of the linear carbon skeleton. However, the γ -hydroxy- a,β -butenolide and β,γ -epoxybutenolide ends are not unknown². In this communication we wish to report the isolation of a new C_{21} -furanoterpene, furospongolide (1), which coexists with several alkylated scalarins³ in *Dysidea herbacea* collected in the Gulf of Suez (Red Sea). Freeze-dried sponge was extracted with petrol ether to give a crude extract (1.6% dry weight) from which compound 1 (0.05% dry weight of the animal) could be obtained following chromatography on Silica-gel (eluted with petrol ether and increasing amounts of ether) and on Sephadex LH-20 (eluted with petrol ether-CH₂Cl₂-MeOH in ratio of 1:1:2). Compound 1, $C_{21}H_{28}O_3$ an oil, m/e 328 $(M^+, 12\%), 247 (M^+ - C_5H_5O, 4\%)$ and $81 (C_5H_5O^+, 100\%)$ exhibits a positive Ehrlich test, for furans, in agreement with the 81 fragment in the mass spectrum⁴. The IRspectrum of 1 ($\nu_{\text{max}}^{\text{CHCl}_3}$ 1785(w), 1775(s), 1645, 1170, 1070, 1030, 880 cm⁻¹ and $v_{\text{max}}^{\text{CCl}_4}$ 1785(s) and 1755(w) cm⁻¹) was consistent with the presence of a a,β -unsaturated- γ -lactone⁵ and a furan moiety. The ¹H and ¹³C-NMR spectra of 1 suggested the following structure:

 $^1\text{H-NMR}$ (CDCl₃, 270 MHz, ppm): 7.33 brs (H-1), 6.27 brs (H-2), 7.20 brs (H-4), 5.83 t (J=2 Hz, H-17), 5.16 t (J=8.3 Hz, H-11), 5.10 t (J=8.3 Hz, H-7), 4.72 d (J=2 Hz, H-19,19'), 2.45 t (J=7.8 Hz, H-5,5'), 2.33 t (J=7.3 Hz, H-15,15'), 2.25 brq (J=8 Hz, H-6,6'), 2.05 m (6H, H-9,10 and 13), 1.68 quin (J=7.5 Hz, H-14,14') and 1.59 (CH₃-20 and 21).

¹³ C-NMR (CDCl ₃ , 22.63 MHz, ppm):								
C-	1	2	3	4	5	6	7	8
δ-	142.3	110.9	124.8	138.5	24.8	27.7ª	123.7 ^b	135.3°
9	10	11	12	13	14	15	16	17
38.7 ^d	26.2	125.5 ^b	132.2 ^c	39.4 ^d	28.2ª	24.8	170.4 ^e	115.1
18	19	20	21					
170.0e	72.9	15.7	15.7					

a-e Assignments may be interchanged.

The signal assignment was based on intensive double resonance experiments of compound 1 and its complex with d_{27} -Eu(fod)₃.

The ^{13}C -chemical shift assignment was based on the peak multiplicities (SFORD), chemical-shift considerations and by comparison with structurally related compounds: butenolides, furans, linear terpenes and furano sesterterpenes⁶. The above ^{1}H and ^{13}C -NMR data agree with either 1 of 2 structures namely the $\Delta^{7,11}$ or the $\Delta^{8,12}$ isomers of the above formula. Differentiation between the two was achieved by an LIS experiment, vide supra ($\Delta\delta$, H-17 > H-19 \Rightarrow H-15 > H-14 > H-13 > H-5, 11, 7, 6). This experiment confirmed a 3-(rather than 2)methylene chain to link the complexation site, that is, the butenolide terminus with the nearby double bond, confirming thereby the entire structure of the C_{10} - C_{19} segment⁷. The 13 C-NMR spectrum in addition to suggesting the various molecules' functional moieties also made possible the E-configuration assignment of the 2 double bonds^{8,6e}.

The close relationship between compound 1 and the furospongins² lead us to the name, furospongolide.

Finally, it is noteworthy, that although the a,β -unsaturated butenolide end is unknown in the C_{21} -furanoterpene series it is not unfamiliar in other marine metabolites; e.g. the linear hexaprenoid moqubilin^{6d} terminates with such a moiety.

- 1 We thank Professor J. Vacelet for the identification and Dr Loya and Mr Benayahu for the collection of the sponge.
- 2 L. Minale, in: 'Marine Natural Products', chapter 4, p. 175. Ed. P. J. Scheuer. Academic Press, New York 1978.
- 3 Y. Kashman and M. Zviely, Tetrahedron Lett. 1979, 3879.

5 a) K. Nakanishi, Infra-Red Absorption Spectroscopy-Practical. Holden-Day Inc., San-Francisco 1964; b) R.N. Jones, C.L. Angell, T. Ito and R.J.D. Smith, Can. J. Chem. 37, 2007 (1959).

6 a) L. Barlow and G. Pattenden, J. chem. Soc. Perkins I 1976, 1031; b) L. Crombie, R.W. King and D.A. Whiting, J. chem. Soc. Perkins I 1975, 913; c) R. Tschesche and B. Streuff, Chem. Ber. 111, 2130 (1978); d) M.B. Yunker and P.J. Scheuer, J. Am. chem. Soc. 100, 307 (1978); e) G. Alfano, G. Cimino and S. De Stefano, Experientia 35, 1136 (1979).

The missing signal of 2 double allylic protons (C-10) in the ¹H-NMR spectrum of compound 1 (2.6-2.8 ppm) excluded a possible △^{8,11} structure.

8 P.A. Couperus, A.D.H. Clauge and J.P.C.M. Van-Dongan, Org. Mag. Res. 8, 426 (1976).